Linearized Kernel Dictionary Learning
نویسندگان
چکیده
منابع مشابه
Multiple kernel-based dictionary learning for weakly supervised classification
In this paper, we develop a multiple instance learning (MIL) algorithm using the dictionary learning framework where the labels are given in the form of positive and negative bags, with each bag containing multiple samples. A positive bag is guaranteed to have only one positive class sample while all the samples in a negative bag belong to the negative class. Given positive and negative bags of...
متن کاملRobust Kernel Dictionary Learning Using a Whole Sequence Convergent Algorithm
Kernel sparse coding is an effective strategy to capture the non-linear structure of data samples. However, how to learn a robust kernel dictionary remains an open problem. In this paper, we propose a new optimization model to learn the robust kernel dictionary while isolating outliers in the training samples. This model is essentially based on the decomposition of the reconstruction error into...
متن کاملSpeech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملHierarchical Sparse Dictionary Learning
Sparse coding plays a key role in high dimensional data analysis. One critical challenge of sparse coding is to design a dictionary that is both adaptive to the training data and generalizable to unseen data of same type. In this paper, we propose a novel dictionary learning method to build an adaptive dictionary regularized by an a-priori over-completed dictionary. This leads to a sparse struc...
متن کاملDomain Adaptive Dictionary Learning
Many recent efforts have shown the effectiveness of dictionary learning methods in solving several computer vision problems. However, when designing dictionaries, training and testing domains may be different, due to different view points and illumination conditions. In this paper, we present a function learning framework for the task of transforming a dictionary learned from one visual domain ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Journal of Selected Topics in Signal Processing
سال: 2016
ISSN: 1932-4553,1941-0484
DOI: 10.1109/jstsp.2016.2555241